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Executive summary 

The execution of Task 4.4 Data transformation and clustering is part of the Horizon 2020 

(H2020) project BuiltHub, a European project aiming to create a dynamic EU building stock 

knowledge hub. By linking the potential data sources and the building-related policy and 

business, the project explores the benefits of developing community-enhanced data-driven 

applications (1). The outcome of the project is expected to contribute to European energy 

efficiency policies and key directives, such as Energy Performance in Building Directive (EU) 

2018/844, Energy Efficiency Directive (EU) 2018/2002, Renewable Energy Directive (EU) 

2018/2001, and Renovation Wave (COM) 2020/662.   

To support the data-driven policy formulation for the building sector, Working Package 4 

focuses on conducting the data processing and analytics tasks for the BuiltHub, including 

indicators specification, protocol creation, data structure systemization, as well as data 

transformation and visualization. The ultimate objective of Task 4.4 was to transform and 

cluster available datasets from Builthub. The periodic goals are two-folded: (1) screening the 

examples in literature to guide potential analyses in BuiltHub, particularly in the later work for 

Task 4.4 and 4.5, (2) providing the evaluators of the BuiltHub project with a robust background 

work that addss the feasibility when selecting the work to focus in the task. To serve the 

purposes mentioned above, Deliverable 4.4 builds upon the results of Task 4.1 Specification 

of flexible indicators and platform information and further investigates relevant machine 

learning methods for future building stock analysis. Furthermore, Deliverable 4.4 exemplifies 

what methods and tools can be used by partners to use machine learning for developing 

features using machine learning that can be used as estimates for assessing energy efficiency 

strategies as part of the BuiltHub roadmap.  

A mixture of theoretical background regarding building stock analysis and practical research 

applications are introduced to orient the BuiltHub work in the current domain development. 

After scientific positioning, a standard workflow is explicitly proposed to navigate the BuiltHub 

building stock analysis, which can be used to assess the requisites in each step. Finally, the 

technical suggestions to overcome the predicaments of the BuiltHub datasets are described 

for future work.  

The deliverable is structured as follows: Section 2 discusses the research field of building stock 

analysis in general, including the evolution of the subject and previous approaches for 

conducting analysis. Thereafter, Section 3 defines the scope of Deliverable 4.4, explaining the 

relationship between theory, research examples, and an applied machine learning workflow. 

Section 4 concerns the theoretical part of machine learning application in building stock 

analysis. A brief introduction to machine learning techniques is given by exhibiting the 

relationship between data science, artificial intelligence, and machine learning. The strengths 

and the weaknesses of the machine learning models are presented to facilitate the model 

selection. Built upon the theoretical background, a comprehensive review of the building stock 

research using machine learning techniques is performed. Through demonstrating practical 

examples, the aim is to show the possibilities of building stock analysis and further research 

opportunities for pre-defined thematic areas. Critical information regarding input datasets, the 

aggregation level, and the building types is also identified in Section 4. 
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Section 5 illustrates what steps partners can take to incorporate machine learning in their 

analyses as part of the BuiltHub roadmap. It includes the workflow development for the applied 

machine learning loop with five sequential steps to work with data-driven problem-solving for 

partners, data merging techniques, and some analyses. In section 5 three examples are 

included to further illustrate what steps partners should take. The examples are describing 

different levels of applying ML in the prediction of hazardous materials in the existing building 

stock. Despite different data input and research purposes, both examples and the Swedish 

Pilot case in section 6 show how specific information can be added to the national building 

database using machine learning methods. 

Section 6 describes the Swedish Pilot where the Swedish authorities were assisted in 

developing a building-specific national energy efficiency strategy. Machine learning was used 

to predict building types for which costs and efficacies for energy efficiency renovation 

measures had been developed. Finally, a last section has been added to link the Swedish case 

with exploitation possibilities as the BuiltHub project is coming towards an end. There are 

several opportunities for exploitation of BuiltHub results that could explored.    
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Introduction 

Research on building stock is by its nature interdisciplinary and complex. Since the built 

environment is heterogeneous and regional-dependent, the building stock analysis concerns 

a variety of economic, social, and environmental aspects at different aggregation levels. The 

building stock analysis can be approached from several perspectives, and the thematic 

development is uneven. Driven by the need to understand energy consumption and the 

increasing necessity to refurbish post-war buildings, the pursuit of economic efficiency opened 

the prelude of building stock modelling (2). Besides, the urge of climate change accelerates 

the focus of environmental sustainability of building stock management (3). Compared to the 

economic and environmental-oriented building stock research, the social dimensions 

regarding affordability, equality, and segregation among the occupants are underdeveloped 

(4). Given the obscure nature and comprehensiveness of the subject, concrete examples and 

defining indicators are used to measure the sustainable development of building stock study 

(5).    

Simultaneously, advanced development of methods and tools offer new opportunities to study 

the building stock quantitatively and qualitatively. For instance, remote sensing and 

geographical information system (GIS) enable spatial investigation with multiple data input 

formats. Other data analytic techniques and programming languages, such as Tableau, R, 

Matlab, Feature Manipulation Engine (FME) and Python, also offer new visualization 

possibilities for urban analytics. Implementing the digital tools may better capture the dynamics 

of the building stock and provide more reliable models to describe its composition using 

statistical results. However, significant challenges remain in collecting digital data for specific 

research purposes.  

The diverse research spectrum of the subject and insufficient fundamental data results in slow 

advance (2). To overcome the challenges of partial analysis, the emergent building stock 

research tried to connect different types of information to conduct a more comprehensive and 

in-depth study. Machine learning comes into play to leverage the limited known examples to 

predict the unknown instance at a large scale. Other advantages of applying machine learning 

methods include rapid prediction iteration, cost-efficient hypothesis testing, change monitoring 

for time series data, etc. Consequently, it can be used to effectively validate field data such as 

energy performance certificates (EPC) and update the change of registered data due to the 

shift of renovation strategy policies (6).  
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Scope 

This deliverable aims to describe what machine learning can be within building stock analysis. 

Figure 1 below illustrates the structure of Deliverable 4.4 and the association between each 

element. By reviewing the applied machine learning approaches in previous building stock 

research, a comprehensive view of data analytics’ potential in various thematic topics in their 

respective theoretical background has been created. Afterwards, an in-depth discussion about 

available examples, along with the applied machine learning loop workflow, was described. 

Lastly, the possible analysis and challenges to work with the BuiltHub building stock data were 

presented.  

 

 

Figure 1. Scope of Deliverable 4.4. 

 

To guide building stock analysis, the thematic areas of the BuiltHub data structure, along with 

the indicators and the datasets available in the project were created in Table 1. The referenced 

indicators are adopted from Task 4.1, produced according to the thematic areas to present the 

BuiltHub platform information. Topics 1 to 5 concern existing Building Stock Observatory 

(BSO) areas with their respective thematic areas, including energy, building stock, building 

characteristics, certification, and finance. Topics 6 to 9 are new areas included in BuiltHub to 

comprehend the building stock analysis, such as indoor environment quality (IEQ), climate, 

and smart-grid ready buildings. According to the data indicators from T4.1 and the matrix from 

T4.2, a majority of the BuiltHub datasets concerned 1.1 Energy consumption and 2.1 Building 

stock characteristics. These datasets mainly originated from EUROSTAT with similar data 

structures and categorical units. However, there is a lack of data in the thematic areas 3.2 

Technical building systems, 6.2 Indoor air quality, 6.3 Natural lighting, 8.1 Loading stations, 

and 9.1 Smart-grid ready buildings. As highly aggregated data from the EU member countries 

were compiled from 30 different sources, common indicators were developed for assessment 

purposes in comparative studies. The indicators for 1.1 Energy consumption concern, for 
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instance, total or specific energy consumption for the residential sector in total, per building or 

dwelling, or per square meter. Similar indicators were created for 1.3 Energy market, 3.2 

Technical building systems, 6.1 Comfort, 6.2 Indoor air quality, 6.3 Natural lighting, and 9.1 

Smart-grid ready buildings to describe statistical features of the data such as count, mean 

values, and share.  

Table 1 Thematic structure of the BuiltHub building stock analysis with indicators and available 

datasets. 

Topic Thematic areas Indicators Available 
dataset * 

Existing Building Stock Observatory (BSO) areas 

1. Energy 

1.1 Energy 

consumption 

1. All-end-uses Total Energy consumption for 
the residential sector.  
2. Space heating Total Energy consumption for 
the residential sector.  
3. Domestic hot water Total Energy 
consumption for the residential sector.  
4. Electricity consumption of lighting for the 
residential sector.  
5. Space cooling energy consumption for the 
residential sector. 
6. Space heating Energy consumption of 
single-family residential sector. 
7. Total energy consumption per building. 
8. Total Energy consumption per dwelling in the 
residential sector. 
9. Space heating energy consumption per 
dwelling for the residential sector. 
10. Water heating energy consumption per 
dwelling for the residential sector. 
11. Lighting energy consumption per dwelling 
for the residential sector. 
12. Energy consumption per m² for the 
residential sector. 
13. Space heating energy consumption per m² 
for the residential sector. 
14. Space cooling energy consumption per m² 
for the residential sector. 

1;6;8;12;14; 

15;16;22 

1.2 Energy poverty NA 17;23;25;26 

1.3 Energy market 

1. Average energy price of natural gas. 

2. Average energy price of fuel oil. 

3. Average energy price of coal. 

4. Average energy price of electricity. 

5. Average energy price of biomass. 

24 

2. Building 
stock 2.1 Building stock 

characteristics 

1. The total number of dwellings.  1;2;3;5;6;7; 

10;11;17;19 

;22 

2.2 Building 

renovation 

NA 13 
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3. Building 
characteristics 

3.1 Building shell 

performance 

NA 21 

3.2 Technical 

building systems 

(incl. smart 

meters) 

1. Share of dwellings with condensing boilers 

2. Share of dwellings with solar heating system 

3. Share of residential dwellings with a combi 

boiler 

4. Number of dwellings with heat pumps 

5. Number of dwellings with the heating on 

electricity 

6. Number of residential dwellings with electric 

heaters (not heat-pump) for water heating 

NA 

3.3 Nearly zero-

energy buildings 

NA 4;5;13 

4. Certification 4.1 Certification NA 4;18 

5. Finance 5.1 Financing NA 20 

New areas suggested by BuiltHub 

6. Indoor 
Environment 
Quality (IEQ) 

6.1 Comfort 

1. mean HDD (per country/region). 

2. mean CDD (per country / region) 

3. share of buildings that can keep the house 

warm 

4. share of households with a leaking roof 

5. share of households with leaking walls 

6. share of households with leaking windows 

7. share of offices with individual temp. control 

27 

6.2 Indoor air 

quality 

1. share of office space with ventilation NA 

6.3 Natural lighting 1. share of office space with natural lighting NA 

7. Climate 7.1 CO2 emission NA 28 

7.2 Climatic 

conditions** 

NA 29 

7.3 Solar radiation NA 30 

8. E-mobility 8.1 Loading 

stations 

NA NA 

9. Smart-grid 
ready buildings 

9.1 Smart-grid 

ready buildings 

1. total numbers of installed meters 

2. share of installed meters in the existing 

buildings 

NA 

* The 30 datasets listed below are currently accessible in the BuiltHub project. The column Available 

Dataset corresponds relevant datasets and thematic areas.   

Dataset 1: Horizon 2020 HotMaps project: Building stock analysis 

Dataset 2: IEE TABULA project: Typology Approach for Building Stock Energy Assessment 

Dataset 3: IEE EPISCOPE project: Focus of building stock monitoring 

Dataset 4: IEE ZEBRA2020 project: Nearly Zero-Energy Building Strategy 2020 
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Dataset 5: IEE ENTRANZE project: Policies to Enforce the TRAnsition to Nearly Zero Energy 

buildings in the EU27 

Dataset 6: H2020 ODYSSEE - MURE project: Comprehensive monitoring of efficiency trends 

and policy evaluation in EU countries, Norway, Serbia and Switzerland. 

Dataset 7: FP7 CommONEnergy Project: building stock 

Dataset 8: JRC IDEES 2015 

Dataset 9: SET-Nav - Strategic Energy Roadmap 

Dataset 10: H2020 ExcEED Project: building stock data 

Dataset 11: FP7 iNSPiRe project: building stock analysis 

Dataset 12: Energy consumption and energy efficiency trends in the EU-27+UK for the period 

2000-2016 - FINAL REPORT 

Dataset 13: Comprehensive study of building energy renovation activities and the uptake of 

nearly zero-energy buildings in the EU - FINAL REPORT 

Dataset 14: EUROSTAT: Final energy consumption in households 

Dataset 15: EUROSTAT: Final energy consumption in households by fuel 

Dataset 16: EUROSTAT: Disaggregated final energy consumption in households 

Dataset 17: ZENSUS 2011 

Dataset 18: DPE - Diagnostic de Performance Energetique 

Dataset 19: Towards a sustainable Northern European housing stock - Sustainable Urban Areas 

22 

Dataset 20: DEEP - De-risking Energy Efficiency Platform 

Dataset 21: Energy consumption and efficiency technology measures in European non-

residential buildings 

Dataset 22: Dataset of the publication: Europe’s Building Stock and Its Energy Demand: A 

Comparison Between Austria and Italy 

Dataset 23: National Housing Census: European statistical System 

Dataset 24: Energy prices in 2019 - Household energy prices in the EU 

Dataset 25: EUROSTAT: GDP per capita in PPS 

Dataset 26: EUROSTAT: Population on 1 January by age, sex and NUTS 2 region 

Dataset 27: EUROSTAT - Cooling and heating degree days 

Dataset 28: EDGAR (Emissions Database for Global Atmospheric Research) CO2 Emissions 

Dataset 29: CORDEX - Regional climate model data on single levels for Europe 

• Dataset 30: PVGIS - Photovoltaic Geographical Information System 
 

** Climatic conditions refer to the climate parameters relevant for buildings’ energy demand, such as 

temperature, heat degree day (HDD), cooling degree day (CDD), and wind speeds.  
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Applicability of machine learning approaches 

After delineating the thematic areas and indicators in Section 3, a literature review concerning 

the state-of-art of applied machine learning research in the building stock studies helps position 

the subsequent analysis in theoretical contexts. Section 4 investigates applicable machine 

learning methods for different research purposes and the requirements for conducting analysis. 

Firstly, a general introduction of machine learning techniques related to other decision systems 

is given using a hierarchical diagram, see Section 4.1. Secondly, by reviewing building stock 

research using machine learning techniques, relevant techniques, aggregation levels, and 

datasets are organized in a matrix in Section 4.2. The last part, Section 4.3, discusses the 

criteria for machine learning model selection and presents their strengths and weaknesses. 

Introduction of machine learning techniques 

To understand how machine learning relates to other computational domains or decision-

making systems, Figure 2 is used to clarify the hierarchical relationship among various terms. 

On top of the diagram, data science encompasses the sub-domains of “scientific calculation,” 

“artificial intelligence,” and “human-machine interface.” Data science refers to the science of 

integrating data by applying mathematics, statistics, computer science, and domain knowledge. 

Using scientific methods, processes, algorithms, machinery systems extract knowledge and 

insights from structured and unstructured data (7,8). A standard data science process involves 

data collection, processing, exploration, model building, and results communication (9).  

 

 

Figure 2. Relationship between data science, artificial intelligence, and machine learning. 

 

Learning methods: Different 
method types that are available 

given the accessible data. 

ML: Applications of AI that 
provides an automatic system 

learning from data. ML results in 
knowledge. 

AI: Create intelligent, independent 
and goal-oriented process based 

on data that are useful for 
problem-solving and decision-

making.

Science about the process of 
integrating data. 

Data science

Scientific 
calculation

Artificial 
intelligence 

(AI)

Expert system
Machine 

learning (ML)

Supervised 
learning

Unsupervised 
learning

Reinforced 
learning

Agent system

Human 
machine 
interface
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In traditional building science, scientific calculation plays an essential role in building physics, 

structural engineering, building materials, etc., to predict and enhance buildings’ performance 

and sustainability (10). Computational tools are frequently employed in the design phase to 

simulate building performance based on the input information about the built-in systems. The 

output, such as energy use, ventilation efficiency, heat radiation, etc., is evaluated for design 

optimization (11). Since the computational tools and simulation models are developed, their 

accuracy depends on the expert’s knowledge, assumption setting, and program validation (12). 

Hence, the limitations of the simulation approach present the requirements of comprehensive 

and concrete environmental assumptions, which is usually possible in a small-scale empirical 

study.  

Another way of harnessing machinery computation power is through a human-machine 

interface (HMI) using input and output hardware. Originated from the user interface (UI) in 

industrial design, the ideal UI targets optimizing operation or control from humans to machines 

while leveraging the feedback from machines to assist the decision-making process. 

Operational systems and programming languages are examples of HMI; such functions are 

required to be pre-programmed explicitly by humans (13). In the last decades, artificial 

intelligence (AI) was developed to overcome the limitations of the high involvement of human 

factors in programming.  

AI describes the process of creating intelligent, independent, and goal-oriented learning based 

on the data that are useful for problem-solving and decision-making. In other words, AI can be 

regarded as intelligent agents who perceive their environment and take actions to maximize 

the chance of succeeding in the defined tasks (14). The conventional tasks or goals for AI 

contain knowledge representation and reasoning, automatic planning and scheduling, 

machine learning, natural language processing, and machine perception (15). In the last 

decades, a tendency of the uptake of AI in the Architecture, Engineering and Construction 

(AEC) industry was observed substantially. The trend can be reflected by a growing number 

of research works in the AI-related field, which is due to the complex and difficult problems 

faced by the industry, such as building lifecycle evaluation, performance assessment, robotic 

automation application, and so on (16). The adoption of AI introduces opportunities to the long-

standing challenges by optimizing the scientific calculation and simulation and streamlining the 

traditional HMI process. The maturity of algorithm development and computational power, 

along with recognizing the benefits of AI and high data availability in the recent decade, led to 

an upsurge in applied studies in the subject, including building life cycle (17), construction and 

demolition waste (18), indoor air quality research (19) and so on. Despite being preliminary 

and heuristic, the developed applications offer new perspectives and advance the conventional 

practice. 

As an AI application, machine learning provides an automatic system learning from data and 

generates knowledge (20). Machine learning models are built based on the known instances 

in training data to predict unknown properties without explicitly programming (21). On the other 

hand, data mining employs similar methods like machine learning to discover unknown 

properties in the data. Due to the high flexibility, machine learning is widely adopted in several 

fields for pattern recognition, including medicine, business, and building sciences, when 

developing conventional algorithms is not a viable option (22). In comparison, expert systems 

and agent systems are as common as machine learning in building sciences despite computer 

aids. Expert systems utilize if-then rules to simulate decision-making capability rather than 
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taking in procedural codes (23). An expert system consists of the inference engine and the 

knowledge base. The inference engine applies the rules to the known facts to deduct new 

facts, where rules and facts are saved in the knowledge base (24). On the other hand, agent 

systems rely on the intelligent agent to directly interact with the physical or virtual environment. 

Multiple agents are equipped with a sensor to receive signals, process signals with an 

intelligent program, and react to the environment with specific goals (25). In short, the 

abovementioned machine learning, the expert system, and the agent system belong to artificial 

intelligence.   

Different methods have been developed in the domain, given accessible data and prediction 

purposes according to the learning requirements. Three major types of machine learning can 

be distinguished, i.e., supervised learning, unsupervised learning, and reinforcement learning. 

Supervised learning exploits the known features on data to generate insights for the unknown 

examples; two primary categories of supervised learning problems are “regression” and 

“classification.” Conversely, no data labels are given in unsupervised learning; thus, this type 

of learning deals with clustering and transformation for density estimation. Lastly, 

reinforcement learning is applied in a dynamic situation using intelligent agents to attain pre-

defined goals through maximizing rewards. The application areas for reinforcement learning 

can be seen in engineering subjects, where optimized resource management and control are 

desired. Supervised and unsupervised learning are prevalent in building sciences applications, 

whereas reinforcement learning is usually studied in operations research, control theory, multi-

agent systems, etc. To understand the match between machine learning models, datasets, 

and the purpose of analysis, Section 4.2 introduces the criteria for algorithm selection. 

Criteria for machine learning model selection 

The criteria for selecting machine learning models depend highly on the data types and the 

hypothesis formulation. Overall, various machine learning models present different strengths 

and weaknesses for analysis. Table 2 lists the common model types, descriptions, and 

characteristics for four learning problems: supervised learning, unsupervised learning, 

reinforcement learning, and deep learning. First, supervised learning can be roughly 

distinguished to regression models, classification models, and decision tree models. 

Regression models assume a linear relationship between dependent and predictive variables 

and handle mostly continuous values. Exceptions are generalized linear regression, which can 

process both continuous and categorical variables and transform non-linear problems. Also, 

regularized linear model, partial least squares, and principal component regression are 

suitable for high dimensional datasets, i.e., the number of observations is fewer than the 

numbers of variables, as well as to handle multicollinearity problems, i.e., the correlation 

between predictive variables that causes sensitive and less precise coefficient estimates.  

On the other hand, classification models employ linear and non-linear classifiers to deal with 

discrete values for binary, multi, or nominal dependent variables. They are used to predict 

probability with robust and incremental learning capability. Due to high flexibility and easy 

interpretation, support vector machine and k-NN is frequently used in building stock analysis 

for pattern identification, such as building type and design feature prediction. The former 

separates the data groups by projecting data in space and determining their categories based 

on the gap, while the latter leverages incremental learning to estimate the likelihood of data 
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groups. Lastly, the decision tree family is a decision support model for continuous and 

categorical variables. No variable selection is required, and the capability to deal with missing 

data is the most significant advantage. However, the decision tree models tend to be 

overfitting, and modeling error occurs for learning noises in the training dataset and 

compensates the generalizability for new datasets, thus needing careful tunning.  

Table 2: Strengths and weaknesses of the applied machine learning models adopted from Wei 
et al. (19). 

Category Model Description Strength Weakness 

Supervised learning 

Regression 

models 

Multiple linear 

regression  

Linear regression 

models for 

continuous, 

dependent 

variables 

1. Determine 

predictive variables 

2. Detect outliers 

3. Flexible variables 

selection methods, 

i.e., stepwise, 

forward, backward 

algorithms 

1. Sensitive to outliers 

2. Requires more 

observations than 

variables 

3. The risk of 

multicollinearity 

Generalized 

linear 

regression 

Linear regression 

models for 

continuous and 

categorical 

variables. 

Response 

variables with 

errors and not 

normally 

distributed are 

allowed 

1. Transformation of 

non-linear problems 

to linear problems 

2. Flexible variables 

selection methods, 

i.e., stepwise, 

forward, backward 

algorithms 

1. Sensitive to outliers 

2. Requires more 

observations than 

variables 

3. The risk of 

multicollinearity 

Regularized 

linear model 

(LASSO 

regression, 

Ridge 

regression) 

Linear regression 

models for 

continuous 

variables that 

regulate or shrink 

the coefficient 

estimates toward 

zero 

1. The number of 

observations can be 

lower than the 

number of variables 

2. Prevent 

overfitting 

3. Perform variable 

selection  

4. Multicollinearity is 

handled 

1. LASSO regression: 

restricted number of 

selected variables   

2. Ridge regression: 

Unable to classify the 

important level of 

variables  

 

Partial least 

squares 

Linear regression 

models for 

continuous and 

categorical 

variables that 

project variables 

to a new space 

1. The number of 

observations can be 

lower than the 

number of variables 

2. Can have more 

than one dependent 

variable 

1. The number of 

components is chosen 

based on cross-

validation and cross-

validated R2 (Q 

indicator) 
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3. Deals with 

missing data  

4. Multicollinearity is 

handled 

Principal 

component 

regression 

(PCA) 

Linear regression 

models for 

continuous 

variables based 

on principal 

component 

analysis 

1. The number of 

observations can be 

lower than the 

number of variables 

2. Multicollinearity is 

handled 

1. Dependent variable 

is out of consideration 

when choosing the 

principal components 

Classification 

models 

Logistic 

regression 

Linear classifiers 
for the discrete 
variable as the 
output is 
transformed to 
log-odds 

1. Estimate the 

probability  

2. Make no 

assumptions about 

distributions of 

classes in feature 

space 

3. Provide 

coefficient size and 

direction of the 

association 

1. Require average or 

no multicollinearity 

between predictive 

variables 

2. Can be overfitted in 

high dimensional 

datasets, i.e., number 

of observations is less 

than the number of 

variables 

Support vector 

machine (SVM) 

Linear and non-

linear classifiers 

that projected the 

categorical data 

in space and 

determined their 

categories based 

on the gap 

1. Capable to 

handle high 

dimensional data 

1. Hard to choose the 

penalty variable 

2. Hard to choose the 

kernel 

Naïve Bayes  Linear and non-

linear classifiers 

that use Bayes’ 

theorem to 

calculate the 

probability 

1. Capability to 

handle high 

dimensional data 

2. Fast processing 

3. Robust and 

incremental learning  

1. No variable 

selection 

2. No explicit model 

3. Strong naïve 

independence 

assumption between 

the features 

k-NN Linear and non-

linear classifiers 

that estimate the 

likelihood of data 

group based on 

close proximity 

1. Simple and 

incremental learning 

1. Slow processing 

2. Hard to tune the 

model and interpret 

results 

3. Variables need to 

be at similar scales 

Decision tree 

models 

Decision tree Linear decision 

support models 

that take in 

1. No need for prior 

variable selection  

1. Requires a large 

amount of data to train 
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continuous and 

categorical 

variables and 

present possible 

consequences 

2. Deals with 

missing data 

2. Have overfit 

tendency 

Gradient 

boosting tree 

Linear and non-

linear decision 

support models 

for continuous 

and categorical 

variables that 

combine decision 

tree algorithms 

and boosting 

methods 

1. Accuracy is 

improved 

2. Mediate 

overfitting 

1. Requires model-

tuning 

2. Slow processing 

due to cannot be 

parallel processing  

Random forest Linear and non-

linear decision 

support models 

for continuous 

and categorical 

variables that 

combine the 

prediction results 

of multiple trees 

1. No need for prior 

variable selection 

2. Accuracy is 

improved 

3. Mediate 

overfitting 

4. Parallel 

processing 

1. Hard to interpret the 

predictors 

2. Multiple parameters 

to tune, i.e., number of 

features, trees, and 

minimum sample leaf 

size 

Unsupervised learning 

Clustering Hierarchical 

clustering, 

distribution-

based 

clustering, 

density-based 

clustering,  

k-means 

clustering 

A grouping 

method for similar 

data 

characteristics  

1. Optimize 

between intraclass 

and interclass 

variance 

1. Determine the 

number of groups 

2. Variables needs to 

have similar scales 

3. Results may vary 

on the algorithm and 

tunning method 

Transformation Principal 

component 

analysis (PCA), 

multiple 

correspondence 

analysis (MCA) 

An information 

projection method 

to study the 

similarities 

between 

individuals and 

variables in a 

multidimensional 

space 

1. Deal with a large 

amount of data 

1. Variables needs to 

have similar scales 

Reinforcement learning 
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Control 

learning 

Monte Carlo, 

Tabular Q-

learning, Batch 

Q-learning  

Optimal control 

for the closed-

loop problems 

1. Consider the 

whole problem and 

prevent local 

optimization 

1. Trade-off between 

exploration and 

exploitation 

Deep learning 

Artificial neural 

networks 

Feed-forward 

back-

propagation 

network, 

cascade 

correlation 

(Supervised 

learning) An 

interconnected 

linear and non-

linear neuron-like 

structure that 

classifies 

continuous and 

categorical 

variables 

1. Deal with missing 

data 

2. Parallel 

processing 

3. Apply to various 

types of problems, 

i.e., image and 

sound recognition, 

text, time series  

1. Require strong 

computation power 

2. Difficult to tune the 

model 

3. Hard to understand 

the behavior of the 

network 

Autoencoder 

neural network, 

self-organizing 

map 

(Unsupervised 

learning) 

 

The objective of unsupervised learning is to capture the information structure of the datasets 

without available labels to verify the prediction results. They are used to discover clusters and 

detect outliers, extract, and compress and summarize the data. Two major types of 

unsupervised learning exist, i.e., clustering and transformation. Clustering divides data points 

into different groups based on their similarity. The number of clusters and the linkage criteria 

should be defined to initiate the iterative, bottom-up approach. Another type of unsupervised 

learning is transformation, which describes the process for extracting or computing information. 

Factorial analysis, such as Principal component analysis (for numerical variables) and multiple 

correspondence analysis (for categorical variables), are standard techniques for 

dimensionality reduction. The two-dimensional approximation is created to capture most of the 

variation in the dataset. Normalization is needed before clustering and transformation to scale 

the variables evenly. Both methods can visualize data points relationships in a dataset and 

can be used for compression to identify features for supervised learning.  

Reinforcement learning describes goal-oriented agents that are interacting with an uncertain 

environment constantly (26). The agent’s action affects the options and uses its experience to 

improve opportunities later. Thus, it seeks to balance the trade-off between exploration and 

exploitation. In short, reinforcement learning is studied in optimal control theory and is widely 

adopted in engineering subjects, including building system control. Deep learning is a subfield 

of machine learning that simulates neural networks with representation learning. 

Representation learning, also called feature learning, automatically detects features or 

classification from raw data (27). Deep learning encompasses supervised and unsupervised 

learning and progressively uses multiple layers to extract high-level features from data (28). 

Deep learning applications have been seen in automatic speech recognition, image 

recognition, natural language processing, recommendation system, etc. In the next section, 
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the status quo of applied machine learning in the building stock research will be reviewed with 

an explicit focus on supervised, unsupervised, reinforcement learning, and deep learning. 

Review of the building stock research using machine learning 

techniques 

Nine major topics are identified in the building stock analysis and expanded to several thematic 

areas, structured in Table 3. The first five topics are derived from the existing BSO areas: 1. 

Energy, 2. Building stock, 3. Building characteristics, 4. Certification, and 5. Finance. The new 

topics suggested by BuiltHub are 6. Indoor environment quality (IEQ), 7. Climate, 8. E-mobility, 

and 9. Smart-grid-ready building. The matrix below maps the previous building stock research 

using machine learning techniques in different thematic areas. By demonstrating their research 

purpose, machine learning method, aggregation level, and input data can help delineate the 

status quo of the building stock study. These research examples are used to orient the analysis 

of the available BuiltHub datasets. 

Table 3: Summary of the building stock studies using machine learning methods categorized 
according to thematic areas. Each machine learning method and its abbreviation are explained shortly 

below the table. 

Thematic 
areas 

Ref. Research purpose Method* Aggregation 
Level/ 
Building 
category  

Prediction  
dataset 

Training 
dataset 

1.1 Energy 

consumption 

(6) Predicting heat 

demand indicators from 

the magnitude of 

registered buildings for 

EPC validation 

ANN Regional/ 

Residential 

buildings 

The same 

dataset as 

training data 

Energy 

performance 

certificates 

1.2 Energy 

poverty 

(29) Categorizing energy 

poverty risk based on 

income and energy 

expenditure 

XGBoost 
 

National/ 

General 

buildings 

The same 
dataset as 
training data 

Data of house 
value, 
ownership, 
age, 
household 
size, average 
population 
density, 
household 
income  

1.3 Energy 

market 

(30) Developing adaptive 

updating forecast 

system for dynamic 

energy market 

ANN Regional 

buildings 

The same 

dataset as 

training data 

Numerical 

weather 

prediction 

data, 

Historical 

power data 

2.1 Building 

stock 

characteristics 

(31) Predicting the 

presence of hazardous 

materials 

Statistics Regional/Gen

eral buildings  

National 

building 

registers, 

Environmenta
l inventories 
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Energy 

performanc

e 

certificates  

2.2 Building 

renovation 

(32) Predicting building 
features for energy 
efficiency strategies 

SVM, 

logistic 

regressi

on 

National/ 
Multifamily 
houses 
 

National 
building 
registers, 
Energy 
performanc
e 
certificates  

Building 
observations 
from Google 
Street Views 
 

3.1 Building 

shell 

performance 

(33) Benchmarking energy 

performance of existing 

residential buildings’ 

envelopes 

PCA, 

PCR, 

MRA, 

Fuzzy C-

Means 

clusterin

g 

Regional/ 

Residential 

buildings 

Monthly 

recorded 

climate and 

energy 

consumptio

n data from 

the 

household 

community 

Field survey 

from infrared 

thermography 

3.2 Technical 

building 

systems (incl. 

smart meters) 

(34) Leveling the features 

importance for 

classifying both the 

building use type and 

performance 

Supervis

ed 

classifica

tion with 

time 

series 

analysis 

Not specific/ 

Non-

residential 

buildings 

Building 

performanc

e 

classificatio

n and 

characteriza

tion  

Building 
electrical 
meter data  
 

3.3 Nearly 

zero-energy 

buildings 

(35) Comparing modeling 

approach for low 

energy building 

systems 

RLC, 

ANN 

Individual 

building/ 

Residential 

LowEx 

buildings 

Model 

comparison 

with rule-

based 

heuristic 

control 

Weather 

data, global 

solar 

irradiation, 

ambient air 

temperature 

4.1 Certification 

(36) Proposing a new 

method for building 

energy performance 

benchmarking 

K-means 

clusterin

g 

National/ 

General 

buildings 

National 

benchmarks 

for 

validation 

Multidimensio

nal building 

features 

5.1 Financing 

(37) Proposing an 

automated property 

valuation model 

GBoost, 

Genetic 

algorith

m 

optimizat

ion 

National/ 

General 

buildings 

The same 

dataset as 

training data 

Traded 

houses 

property data 

from Github 

public 

machine 

learning 

datasets, 

data 

extraction 
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from BIM 

models 

6.1 Comfort 

(38) Achieving optimal 

control of HVAC and 

window systems for 

natural ventilation 

Reinforc

ement 

learning 

Citywide/ 

Residential 

buildings 

Model 

comparison 

with rule-

based 

heuristic 

control 

Hourly 

weather data; 

Building 

parameters 

6.2 Indoor air 

quality 

(39) Predictive mapping of 

indoor radon 

concentrations  

Random 

forest, k-

medoids 

clusterin

g, BART 

National/ 

General 

buildings 

Lithological 

unit 

Indoor radon 

concentration 

measurement 

6.3 Natural 

lighting 

(40) Recommending an 

occupant-customized 

luminous environment 

KNN, 
decision 
tree, 
random 
forest, 
SVM 
 

National/ 

General 

buildings 

The same 

dataset as 

training data 

Luminous 
environment 
information 
from lifelog 
data 
 

7.1 CO2 

emission 

(41) Predicting costs and 

CO2 emission in the 

integrated energy-

water optimization 

model 

SVM, 

ANN, 

linear/ 

lasso/ 

ridge/  

elastic 

net/  

bagging 

regressi

on, 

GBoost, 

XGBoost

, light 

GBoost, 

extra 

trees, 

random 

forest 

National/ 

General 

buildings 

The same 

dataset as 

training data 

Data of hybrid 

RWH-GR 

systems, 

ground 

source heat 

pumps, 

energy 

consumption 

in smart – 

nZEB 

buildings, 

energy 

producing 

systems, 

energy 

storage 

system, 

energy export 

and import to 

network, 

costs data, 

weather data 

7.2 Climatic 

conditions 

(42) Predicting multiple 

building energy loads 

and BIPV power 

production 

ANN, 
SVM, 
neural 
network 
 

General 

buildings 

Simulated 

energy data  

Weather 

data, 

simulated 

building 

operating, 
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and energy 

data 

7.3 Solar 

radiation 

(43) Forecasting solar 

irradiation and load 

power consumption 

ANN District/ 

General 

buildings 

Solar 

irradiation 

Load power 

consumption 

(Load, PV 

system, EVs, 

and power 

grids) 

8.1 Loading 

stations 

(44) Simulating and 

optimizing a PV-based 

energy system 

integrated with onsite 

battery and electric 

vehicles 

GBoost Individual/An 

existing 

residential 

buildings 

PV 

production 

and 

curtailment 

Sensors and 

measurement

s installed in 

the houses 

and PV/T 

panels, 

weather data 

9.1 Smart-grid 

ready buildings 

(45) Assessing the 
performance of control 
algorithms for 
implementing demand 
response strategies 

Rule-

based 

control, 

Smart 

algorith

m 

Not specific/ 

Residential 

buildings 

Electricity 
price 
predictor 

Real-time 
smart meter 
data, weather 
data 
 

* Abbreviations and short definitions for various machine learning methods:  

• ANN (Artificial Neural Network): A information processing algorithm that simulates human 

neurons and forms the networks of the input layer, hidden layer, and output layer.  

• XGBoost (Extreme gradient boosting decision-tree): A decision tree-based ensembled 

algorithm applies a gradient boost network to improve the prediction performance for tabular 

data. 

• SVM (Support vector machine): A classifier that projects the data points in space and 

determines their categories based on the gap.  

• Logistic regression: A linear classifier that transforms output to log-odds and generates 

predictive probability. 

• PCA (Principal component analysis): An information projection method to study the similarities 

between individuals and numerical variables in a multidimensional space. 

• PCR (Principal component regression): A regression-based PCA to estimate the unknown 

regression coefficients in a linear regression model. 

• MRA (Multivariate linear regression): A linear regression model studies the correlation of a 

dependent variable and multiple independent variables to predict the output. 

• Fuzzy C-Means clustering: a clustering technique that builds fuzzy partition from data by 

assigning each data point membership in each cluster center.   

• RLC (Reinforcement learning control): A reinforcement learning for solving optimal control 

problems. 

• k-means clustering: A clustering technique that partitions data into k clusters in which each 

observation belongs to the group with the nearest mean and minimizes the total squared error.  

• GBoost (Gradient boosting): An iterative technique to combine weak learners into a single 

strong learner to optimize prediction performance. 

• Genetic algorithm optimization: A random-based evolutionary algorithm to find the optimal 

solutions by introducing a gradual change. 
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• Random forest: An ensemble learning method based on combining the outcomes from multiple 

decision trees.  

• k-medoids clustering: A clustering technique that minimizes the sum of dissimilarities between 

points in the same cluster and designates a point as the center of each group. 

• BART (Bayesian additive regression trees): A similar ensembled technique to GBT; however, a 

prior in the Bayesian approach is used to sum up the contribution of each decision tree.  

• kNN (k-Nearest Neighbour): A classifier that estimates the likelihood of data group based on 

close proximity.  

• Decision tree: A linear decision support model that uses rules to separate features and generate 

predictive outcomes.  

• Lasso regression (Least absolute shrinkage and selection operator): A regularized linear 

regression that applies shrinkage to reduce overfitting and add feature selection.  

• Ridge regression: A regularized linear regression that shrinks coefficients to prevent 

multicollinearity. 

• Elastic net regression: A regularized linear regression that linearly combines the L1 and L2  

penalties of lasso and ridge regression. 

• LGBoost (Light gradient boosting): An boosting ensembled framework that advances XGBosst 

at the leaf level to improve the computational speed and accuracy. 

• Bagging regression: An ensembled estimator that trains the regressors on random subsets of 

the data and aggregates their respective prediction results.  

• RBC (Rule-based heuristic control): A system that operates according to the human-made rules 

to handle data. 

 

Energy consumption is the most studied area within building stock analysis with highly 

accessible data and the increasing need for renovation strategy. Various machine learning 

techniques, including regression and deep learning, were explored for data validation and 

prediction of energy performance certificates (EPCs). Khayatian et al. (6) estimated the heat 

demand indicator by testing the optimal feature combination and model selection. Their finding 

showed that processing only twelve variables from EPCs with the artificial neural network can 

achieve high prediction accuracy. In comparison to energy consumption, literature for energy 

poverty and the energy market are limited. These socio-economic parameters are broad and 

hard to quantify or monitor, making them challenging to address with policy measures (29). 

Longa et al. (29) employed extreme gradient boosting to predict energy poverty risk with socio-

economic data as input. The results showed that machine learning could support evidence-

based policymaking for the complex mechanism of energy affordability. Applied machine 

learning for the energy market has a different focus on dynamic forecasting. The deep neural 

network was explored to achieve an adaptive, updating forecasting system with the sequential 

power data stream (30). The objective is to create an intelligent local energy market from a 

systemic perspective, yet no direct connection to the building stock analysis has been 

observed.  

Analysis regarding building stock involves building stock characteristics and building 

renovation. Usually, national building registers are used as a foundation and adding specific 

field data to complete certain research tasks. For instance, environmental inventories were 

compiled and merged with the building registers and EPCs data to predict the presence of 

hazardous building materials by Wu et al. (31). The feasibility of determining specific energy 

retrofit strategies was investigated by adding building characteristics to the EPCs database by 

Platten (32). Through observing buildings from Google Street Views, insufficient details on 
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building type and suitability for additional façade insulation can be complemented. The 

prediction results from the supervised machine learning were accurate enough to improve 

estimations of national energy-saving potential.  

Furthermore, the thematic areas related to building characteristics are three-fold, defined by 

T4.2: building shell performance, technical building systems, and nearly zero-energy buildings. 

Analyses related to the topic emphasize enhancing the technical performance of construction 

parts or installed systems. Wang et al. (33) proposed a new approach of using multivariate 

linear regression with principal component analysis to benchmark the energy performance of 

building envelopes. Their validation results with infrared thermography indicated that the 

method is preferable to the traditional statistic rating method using average energy 

consumption of buildings to handle the multicollinearity risk with the high dimensional dataset. 

Exploiting the smart meter data from non-residential buildings, Miller (34) analyzed essential 

temporal features for classifying various building performance attributes concerning the 

primary use of a building and the level of building performance. By adopting time-series 

analysis for load clustering, the interpretability of performance classification and customer 

segmentation were explored. To reduce engineering cost and the return-of-investment period 

for setting up the systems of low exergy buildings, Yang et al. (35) compared the performance 

of reinforcement learning control (RLC) approach against the conventional rule-based control 

(RBC) method. In general, RLC outperformed RBC concerning PV/T and the complete building 

control with respect to optimal heat supply, temperature adjustment, and ground heat 

compensation. 

Certification and financing of building stock are less studied, and merely a few applied machine 

learning papers are available. Clustering was used to overcome the limitations of the 

benchmarking program by considering the impacts of the multiple features of energy 

performance in buildings. Gao and Malkawi (36) showed that multidimensional clustering could 

facilitate energy evaluation among different types of buildings. Conversely, the real estate 

sector adopts the AI-enhanced automated valuation models to improve its low transparency, 

inaccuracy, and inefficiency in property valuation rather quickly. Su et al. (37) presented an 

integration framework of building information models (BIM) and machine learning for 

automated property valuation. The aids of machine learning enable comprehensive data 

interpretation, and at the same time, improve information exchange between AEC projects and 

real estate activities.   

Building stock analysis within the indoor and environmental quality (IEQ) topic shows a rapid 

increase with the focus on comfort, indoor air quality, and natural lighting. Supervised and 

reinforcement learning was mainly exploited for monitoring or customization purposes. Studies 

regarding indoor comfort could be, for example, optimal control of active and passive 

ventilation systems. Chen et al. (38) developed optimal control decision models using 

reinforcement learning for HVAC and window systems to minimize energy consumption and 

thermal discomfort. The reinforcement learning control system assessed the outdoor and 

indoor environments and was more effective and cost-efficient than heuristic control. 

Traditionally, indoor air quality (IAQ) is evaluated by measured data in mechanistic models. 

However, it has limitations in reflecting the occupied environments and process measurements 

at a large scale. Because of the shortcomings, machine learning and statistical models are 

getting popular to study indoor particulate matter concentrations, carbon dioxide, and radon 

(19). Among all techniques, artificial neural networks, multiple linear regression, partial least 
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squares, and decision trees are classifiers that frequently study IAQ parameters. Kropat et al. 

(39) employed ensemble regression trees to map and predict multidimensional influences on 

indoor radon concentrations. The results of k-medoids clustering of lithological sample units 

also help to interpret radon properties of rock types. Besides, Seo et al. (40) proposed an 

occupant-oriented indoor luminous recommendation system with the help of the machine 

learning algorithm. With the data input from lifelog data and luminous environment data, a 

customized luminous environment was recommended according to task type, fatigue level, 

and emotion class. 

Machine learning applications in the climate topic involve the impact of the built environment 

on the natural resources or environment, such as water consumption, renewable energy load, 

and carbon dioxide emission. The first part, CO2 emission, is exemplified by a study by 

Javanmard et al. (41). The integrated energy-water optimization model in buildings was 

constructed for machine learning algorithms to predict costs and carbon dioxide emission. The 

investigating model conditions attained high prediction accuracy in various geographical 

regions. Additionally, Leo et al. (42) investigated the performance of a machine learning-based 

multi-objective prediction framework for multiple building energy loads. Their outcome 

indicated that artificial neural network facilitates effective building energy management by 

predicting accurate demand of heating, cooling, lighting loads, and building integrated 

photovoltaic electric power production.  

To realize the development of smart districts, integration of renewable energy sources, loads, 

and electric vehicles (EV) is necessary. Longo et al. (43) presented the possibility of using the 

artificial neural network to forecast solar irradiation and load power consumption. Their results 

pave a step forward regarding optimizing electricity balance from renewable sources using EV 

batteries at the district level. Following the same context, machine learning was used for 

optimizing a photovoltaic(PV)-based energy system with battery and electric vehicles by 

Rehman (44). More specifically, algorithms were employed to identify overproduction 

curtailment and electric vehicle charging events to generate profiles of the PV energy 

production, feasible time windows, energy requirements for EV charging, and building’s energy 

demand. The empirical results indicated the potential of achieving the net-zero energy balance 

through optimizing the combined energy systems. Finally, the performance of machine 

learning models for the implementation of demand response strategies was compared with the 

rule-based approach in smart-grid ready residential buildings. The study by Pallonetto et al. 

(45) showed that the predictive algorithm outperformed the rule-based approach to control an 

integrated heat pump and thermal storage system in terms of economic and environmental 

aspects. 

The results from the extensive literature review show that applied machine learning 

approaches enable the building stock research to overcome several existing barriers. First of 

all, the diverse model types have the capability to process large amounts of heterogeneous 

data types. The analysis dimension can be expanded by coupling economic, societal, and 

environmental data to measure the building stock development with an overall picture. Next, 

the strong computational power of the models helps extend the geographic scope from a single 

case study to regional studies. Leveraging the statistical learning from the subset of 

observations, the performance of predictive algorithms exceeds the rule-based control without 

specifying complete assumptions. This ability to detect underlying patterns from data is useful 

when collecting data is resource demanding, which is also the natural limitation in building 
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stock domain. As the BuiltHub datasets involve various topics, NUTS levels, and time-

frequency, identifying the complete datasets to formulate relevant hypotheses will be the first 

step before data inquiry. Building profile clustering and future demand prognosis could be a 

potential direction in modeling considering the BuiltHub dataset features. Hence, feasible 

application of cluster techniques, tree-ensembled methods as well as neural networks should 

be further studied. 
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Using machine learning as part of the BuiltHub 

roadmap 

BuiltHub Deliverable D6.6 details the need for open data and the various benefits Member 

States can have in the Political, Economic, Social, Technological, Legal, Environmental and 

Implementation dimensions. This is done as part of the work to devise the BuiltHub roadmap 

that will be offered as an support to collaborators.  

Building-specific data are fundamental for developing digital applications in building stock 

management. Such kinds of empirical data can be retrieve from building permits, inspection 

records or building measurements. To translate the unstructural data and merge them with 

building registers, standardization is necessary to assure the data quality i.e., reliability and 

compatibility. Accessibility to these generic and specific building data sources offers the 

opportunity to apply the data-driven approach in the building stock analysis and is promising 

to be replicated internationally. If the data mining of environmental data and the subsequent 

descriptive analysis prove beneficial to the C&D industry, then a similar method can be applied 

extensively to assess other in situ materials in the European building stock for prospective 

material recovery.  

In this section, two examples on how building environmental data contributes to quality 

assessment and recycling of in situ materials are provided. Example I concerns tracing and 

evaluating the recycling potential of PVC flooring through “screening relevant data”. Then  

Example II presents “algorithm development” and “technical solution delivery” in the project of  

developing machine learning-embedded applications to support hazardous material 

assessment in renovation and demolition. Furthermore the roadmap also includes a business 

model for long term financial viability. Machine learning and analysis are tools that will be part 

of a service that can be provided as part of the business model. Central to this is the 

accessibility of data. If BuiltHub has unique accessibility to data and potential query from 

stakeholders, then the business case is stronger. This is illustrated in the Sweden Pilot case 

described in this deliverable.     

Workflow development 

To facilitate the building stock analysis using machine learning techniques, an applied machine 

learning loop was developed in the RISE Research Institutes of Sweden and applied to T4.4 

in the BuiltHub project. The diagram of the loop presented in Figure 3 consists of five sequential 

steps: (1) organization needs, (2) domain consultation, (3) data screening, (4) algorithm 

development, and (5) technical solution delivery. Each step is driven by the outcome of the 

previous step and thus is indispensable to complete the iteration. The workflow for the BuiltHub 

building stock analysis will take reference from the loop and identify the necessary tasks to 

move forward.  
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Figure 3. The applied machine learning loop.  

 

Organization needs are the foundation for conducting building stock analysis that the problem 

owners define the scope of machine learning tasks. The stakeholders’ interest is essential for 

navigating general assumption, testing and delineating data query boundary (see example I, 

II and III below). Therefore, a data-driven study concerns the match between the 

understanding of present limitations and the availability of relevant datasets. The outcome from 

Task 2.2 stakeholder interviews guided the focus of building stock analysis in uploading and 

framing the Swedish case on the BuiltHub webpage. In this way, a comprehensive perspective 

of the status quo, domain experts should be involved after identifying the organization's needs. 

These researchers and practitioners play a critical role in assessing the viability of the analysis 

and setting up the strategy for implementation. The feasible requirements for data acquisition, 

key variables connection, and influential feature selection will also be evaluated at this stage 

and followed by the step of data screening, which involves identifying potential datasets or field 

data relevant to conducting analysis. Within building stock research, limited open databases 

or digital datasets are available due to the lack of the tradition of digital documentation. 

Therefore, researchers tried to develop new tools, such as applications or online platforms, or 

exploit existing registered data, such as building registers or building permit documents, to 

assist the data collection process. From a long-term perspective, it would be beneficial to 

establish a generic digital building information database and, in addition, enrich the database 

with specific thematic information. In this way, data processing time, including dataset merging 

and cleaning, can be shortened since the datasets are structured, consistent, and machine-

friendly. Data validation and transformation are required to be finalized to avoid the risk of 

generating biased results from a skewed dataset.  

After controlling the dataset quality, the next step is to develop an algorithm according to the 

problem types. The work usually begins with explorative data analysis to understand the 

underlying data structure and the amounts of missing values. Histograms and boxplots are 

popular ways to visualize the parameters in descriptive statistics. Besides, the correlation of 

variables can be studied through pair plots, pairwise matrix, or multivariate regressions. Then 

based on the data type of dependent variables, prediction targets concerning regression (for 
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continuous variables) or classification (for discrete variables) can be determined. Furthermore, 

choosing the machine learning models based on the criteria evaluated in Section 4.2. Feature 

selection concerning choosing critical predictive variables can be conducted with the help of 

domain knowledge or feature engineering algorithms. Through carrying out the stepwise 

exercises, the prediction performance of different machine learning models can be evaluated. 

After attaining the results, cross-validation work can be initiated to prevent the models are 

overfit or underfit to the training dataset. Please see the added examples I, II and III for a more 

detailed understanding and some practical cases.   

If high accuracy rates of the models are verified, the next step is to interpret the output and 

deliver technical solutions. This work is highly associated with step 1 Organization needs and 

step 2 Domain consultation to transform the technical insights into an executable plan. The 

technical solutions can be delivered as an expert system combined with a decision tree or 

general suggestions, depending on whether the outcome will be used for property owners or 

policy measures. Two empirical research examples that adopted the applied machine learning 

loop will be presented in the subsequent sections to embody the loop concept in a practical 

term.  

Three examples in the field of building stock analysis are selected to show how the applied 

machine learning loop can be incorpintoate into the research process. They are chosen due 

to their close association with the BuiltHub thematic areas and can reflect the potential analysis 

for the BuiltHub datasets. The first example relates the thematic area 2.1 Building stock 

characteristics, while the second example concerns 2.2 Building renovation. Through 

illustrating their study objectives, data input, and project outcomes can facilitate evaluating the 

potential obstacles when implementing the workflow to the BuiltHub project. Furthermore, 

Example I concerns the essential topic of hazardous material identification to realize a circular 

economy in the construction sector. Also, the results highlighted in the study can add the 

ongoing discussion on including the whole lifecycle in building stock analysis. The subject of 

Example II responds to the relevant EU policy for the BuiltHub project, including Energy 

Performance in Building Directive (EU) 2018/844 and Renovation Wave (COM) 2020/662. 

Thus, these two studies are valuable to be demonstrated in the following sub-sections. 

Merging of datasets 

Availability and quality of data is of the highest importance in AI and ML applications. The 

important source for building stock are the following:  

• National registers, like energy performance certificate register and property register  

• Local registers, like municipality building inventories and customer satisfaction 

surveys.  

• Maps for instance building and property, demographic, land-use and infrastructure, 

and soil types.   

• Height data, for instance, national height models.  
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The different data providers use different data granularity and ways of storing data. As a 

result building data are often stored in different data formats with obscure semantics and 

poor documentation which creates interoperability challenges when integrating and matching 

data for machine learning applications (46). 

The accessibility and interoperability problems have prompted legislation such as the 

2007/2/EC INSPIRE Directive to “create a spatial data infrastructure for the purposes of EU 

environmental policies and policies or activities which may have an impact on the environment” 

(I Directive 2007/2/Ec Of The European Parliament And Of The Council Of 14 March 2007 

Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE), 

2007).    

The Swedish mapping, cadastral and land registration authority, Lantmäteriet, has improved 

access to and the sharing of geo-data by creating geo-portals (e.g. www.geodata.se and 

maps.slu.se) and providing national specifications for geo-data to support (and improve the 

effectiveness of) national and local government services for urban planning, property 

registration, and management of building and environmental permits. These portals can bring 

additional value to e-government and support the growth of user communities and spatial 

services (47).  

However, the challenges of merging dataset are still large and has not yet been overcome. 

Extract Transform Load technology was developed to support automated information 

integration from data warehouse. ETL processes collect data from different sources, then 

integrate and transform the data to support data analysis and decision-making within an 

organization (48). A data warehouse (DW) holds an integrated repository of information that is 

critical for business (49). 

Recent years ETL technologies has also been used to prepare data for simulations and 

machine learning applications. The functions of ETL technologies are to extract, structure, 

aggregate operational data from databases and pre-compute queries to meet requests from 

users doing analyses (50–52).  

Extracted datasets, of different formats and semantics, are subjected to a series of 

transformations to create homogeneous sets that can be stored in databases and delivered to 

end user applications (53).The transformation process involves several operations organized 

in a work flow, typically including schema transformations, cleansing, filtering, sorting, grouping 

and flow operations (routing and merging).  

The ETL process can fix errors and correct for missing data, provide statistical measures, 

capture flows of transactions for safekeeping, combine data from multiple sources and 

structure data according to end-users’ applications (52). An ETL workflow can be visualized 

using flow or network graphs (54), consisting of predefined readers and transformers 

connected to form the workflow in the ETL process (52,54). ETL tools used for implementation 

often have visual flow-based programming interfaces, which are easy to understand, allow re-

use of parts of the workflow, and even enable non-programmers to create fairly complex 

programs with little training (55). Later research by Celani and Vaz (56) showed that visual 

programming interfaces accelerate the implementation of complex programs.  
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In previous studies by (57–59) the Feature Manipulation Engine (FME) is a spatial ETL that 

can handle both spatial and non-spatial data, as well as data from web services. It is based on 

the principle of “semantic mapping”, which enables the reconstruction of data during data 

conversion. Hence, FME can interconvert data more than 400 different spatial formats, 

including most of the common GIS, CAD and BIM formats (60). In addition, FME offers a variety 

of tools to perform spatial analysis, data exploration and geo-processing. The software 

includes approximately 450 transformers to perform different types of spatial and non-spatial 

operations (61). 

ETL is being increasingly used to create performance models based on large quantities of 

spatial and non-spatial data. ETL tools are suitable for extracting data due to the 

interoperability possibilities they provide, for cleaning and conforming spatial data using 

diverse pre-defined functions (transformers), and finally loading the data back to file formats, 

databases or web services. 

Analyses – missing information and clustering 

In statistics, many techniques have been developed to fill missing data. The rule of thumb is 
dropping the missing data if the number of cases is less than the 5% threshold. Especially in 
the multivariate analysis, a large amount of missing data are usually dropped to prevent the 
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risk of over-imputation and inaccurate inference of results (83). Two types of missing values 
should be distinguished for the applications of different handling methods. The first type is 
missing completely at random (MCAR), in which missing values are randomly distributed 
across all observations, whereas the second more common type is missing at random (MAR), 
in which missing values are distributed within one or more sub-samples (83). In MCAR, missing 
values can be handled by filling in the data with a t-test of mean different on the partitioning 
data or dropping the data with pairwise or a list-wise deletion (84). For missing data in MAR, 
filling the non-ignorable missing data can be achieved with multiple imputations such as 
maximum likelihood estimation, regression, using auxiliary variables to reduce bias, collecting 
follow-up data, and collecting data on intent to drop out (84). In practice, Python built-in library 
is capable of missing data detection, marking, and replacement. For example, filling in the 
missing values with a pre-defined constant value, referencing values from another randomly 
selected sample, using statistic features mean, median, and mode for the columns, and 
estimating interpolate values from a predictive model (85). In BuiltHub datasets, random 
missing data for a particular year may be interpolated from previous years. Yet, structural 
missing data above a certain threshold proportion should be dropped out. 

Clustering is in the domain of unsupervised learning with sub-categories of K-means clustering 

and hierarchical clustering specific to time series data. Time series data has several 

characteristics that should be dealt with using particular clustering techniques, for instance, 

information in the ordered sequence, varied series length, and patterns that are not aligned in 

time between different series (86). Hence, combining the k-means clustering and the dynamic 

time warping algorithms can facilitate measuring the similarity between two temporal 

sequences. Time warping algorithm is a technique to calculate the optimal matching between 

two arrays. Firstly, clusters are constructed with k-means algorithms by splitting the data into 

k groups while minimizing the sum-of-squares in each cluster centroid, then employing 

dynamic time warping to collect time series of similar shapes (87). However, processing time-

series data with k-means clustering can be slow for large datasets and thus gives rise to 

another alternative. Hierarchical clustering adopts a distance matrix to merge the least 

dissimilar clusters and visualize the clustering results in dendrogram (86). The advantage of 

hierarchical clustering is that the number of clusters does not need to be specified in advance; 

instead, adjusting a cutoff value results in different clusters. As the BuiltHub datasets contain 

high aggregated time series data with few observations, both methods can be tested in 

accordance with the proposed indicators.   

Example I: Data-driven approach to trace and evaluate the recycling 

potential of PVC flooring in the building stock 

Example I demonstrates implementation of the “data screening” step in the proposed machine 

learning workflow for specific building components – PVC flooring. The project aims to 

enhance plastic material recycling in the building sector by improvning knowledge on plastic 

use in the existing building stock. Currently, the knowledge of the types of in situ PVC flooring 

and its use in various building types are limited, making material recovery and quality 

assurance difficult. Characterizing the presence of PVC flooring and recycling potential in 

buildings can facilitate property owners and demolition contractors in their recycling work of 

old PVC flooring from demolished and renovated buildings. In fact, the entire flooring 

production value chain can benefit from more available and cost-efficient reclaimed material 

for plastic products, meanwhile, less non-recyclable wastes from renovation, deconstruction, 

and demolition for incineration.  
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Recycling plastic waste from renovated or demolished buildings is a promising opportunity to 

attain the climate-neural goal for the building sector. According to the EU EEA report (No 

18/2020), the building sector accounts for the most significant share (around 69%) of PVC 

products with the longest product lifetime in Europe (62). The plastic components made from 

fossil raw material generate a high carbon footprint in the production phase, as well as 

significant environmental impacts for solid waste handling from end-of-life buildings. 

Considering the negative environmental impacts and future potential taxation on fossil-based 

plastic, increasing the extent of reusing and recycling plastic-containing components becomes 

an inevitable step to close the loop (62). Changing the business-as-usual linear value chain of 

plastic is also economically efficient to compensate for the growing need for fossil raw materials 

in production and reduce the risk of short of supply in new construction globally.  

Among plastic materials in buildings, PVC flooring attributes a large number of plastic wastes 

in the construction and demolition waste (C&DW) compared to other plastic products, such as 

window frames, pipes, cables, and packaging (63). In the 90s, PVC flooring accounted for 51% 

of total flooring sales in Sweden, showing its extensive use in the past construction (63). 

Although a national system for separate collection and recycling of material residue from PVC 

flooring installation was established by the Swedish Flooring Association, the annual plastic 

residue recovery rate was less than 20% in Sweden in 2018 (64). A majority of PVC flooring 

collected as combustible waste was incinerated for energy recovery, which is the lowest level 

of waste hierarchy and resulted in an extra two tons CO2-eq per ton of PVC flooring recycled 

in Sweden (64). A recent LCA study on PVC flooring showed that bathrooms with PVC flooring 

as a surface layer have a higher environmental impact than bathrooms with ceramics tiles 

flooring (65). For example, the bathroom with PVC flooring contributes to an effect of 38 kg 

CO2 e/m2, the outer wall 18 kg CO2 e/m2, and the inner wall 11,5 kg CO2 e/m2 (65). To 

address the issue of limited recycling of PVC flooring, improvements on waste sorting of 

flooring by waste handling companies and extending producer responsibility principle to 

general flooring manufacturers are needed.  

Old plastic floors represent a considerable material resource. Nearly 150 million square meters 

of PVC flooring were installed in the Swedish building stock, corresponding to over 350,000 

tonnes of potential raw material with a recycling potential, which is equal to approximately one 

million tonnes CO2 (64). However, the information on the presence and the extent of PVC 

flooring in the existing building stock lacks systematic investigation. The building-specific 

information on flooring materials are not registered in the current national building database, 

making it hard to estimate the location and the extent of recyclable PVC flooring prior to 

renovation, deconstruction, and demolition works. Other barriers to low collection rates of PVC 

flooring are also identified, including a disconnecting recycling practice by individual 

manufacturers, a low adoption rate of the collection and recycling system in the sector, etc 

(64). To overcome these challenges, new knowledge on the historical use of PVC flooring in 

various building types in Sweden should be developed and transferred among the actors along 

the PVC flooring life cycle. Pre-demolition audit inventories from the renovated, deconstructed, 

and demolished buildings contain information on the presence of PVC flooring. Environmental 

investigations prior to demolition and extensive renovation are mandatory in many EU 

countries, regulated by local building codes or planning and building act (66). Over the years, 

the registers have been maintained by city archives in individual municipalities. By coupling 

PVC flooring records from pre-demolition audit inventories and building registers, it is possible 
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to characterize PVC flooring in various building types in different regions built in the past 

century. This information is critical to the Swedish Flooring Association and C&DW actors to 

be better prepared to collect, separate, and recycle PVC flooring. Meanwhile, it can also be 

advantageous for property owners or demolition companies to estimate material assets in 

advance to plan for cost-efficient material recovery.  

By compiling pre-demolition audit inventories from the three largest cities of Stockholm, 

Gothenburg, and Malmo, the environmental information, including plastic flooring used in a 

majority of building stock in Sweden, will be covered. The usefulness of such empirical data 

and the data integration workflow have been proved in the Swedish context (31). From an 

urban mining perspective, the gained information can benefit infrastructure and production 

systems at the sectoral level by promoting secondary plastic sourcing from the building stock. 

New knowledge of potentially available plastic flooring in the building stock can also encourage 

PVC flooring producers to transform their business models and value chains toward circular 

development with the scientific basis for investment decisions.  

Three primary risks are identified to succeed in the project, described in Table 4. The first risk 

concerns available data on the PVC flooring from environmental inventories for each building 

type. Since plastic materials/wastes are investigated according to the resource and waste 

guidelines for construction and demolition, the risk of lacking sufficient data is relatively low. 

The second risk pertains to the quality of documentation on PVC flooring. The presence of 

PVC flooring in specific buildings and spaces are available, yet the availability of more detailed 

information on amounts and types of PVC flooring requires further exploration. Lastly, the 

timeline on various kinds of PVC flooring production and respective properties needs to be 

constructed.  

 

 

 
Table 4. Risk identification and evaluation in the project. 

Risk Description Likelihood Impact 

1 Data availability of environmental inventories, i.e., sufficient 

data amount for each building type to do statistical analysis. 

low middle 

2 Data quality of environmental inventories, i.e., 

comprehensive information on types of plastic components 

and amount.  

low middle 

3 Data accessibility of production records, i.e., timeline on 

historical use of PVC flooring types and their chemical 

properties. 

low  low 

 

Establishing a PVC flooring dataset in the building stock is expected to contribute to improving 

the existing national system for separate collection and recycling of PVC flooring in the built 

environment. For instance, efficient sorting of plastic from the construction industry can be 

achieved by disseminating the results along the C&DW value chain and the industrial-wide 
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association. Next, the analysis outcomes from the empirical data can be used to streamline 

the guideline "Resource and waste guidelines for construction and demolition" from the 

Construction Federation (67). Promoting efficient use of material resources in non-toxic circular 

cycles is possible with the data-driven method as the information on asbestos-containing 

flooring and glue and PCB-containing acrylic flooring are available on environmental 

inventories to differentiate from clean PVC flooring. Lastly, the project outcomes can facilitate 

a better understanding of the available plastic materials assets in the building stock to support  

other flooring manufacturers to assess secondary material supply and move toward green 

product portfolios. 

The plastic dataset is used as input data for statistical operation to forecast the recycling 

potential of PVC flooring in building stocks of other areas. The pre-study will form a basis for 

knowledge exploitation from practical sides. Building such expertise and research capacity is 

fundamental to ensuring the quality of the recyclable PVC flooring and improving its residue 

collection and separation rates. Primary barriers to PVC flooring separate collection and 

recycling, including engagement from manufacturers and standard practice within the industry, 

can be addressed through providing more transparent quality assurance of recycled PVC 

flooring. At the end, the system analysis results will be transform to technical recommendations 

for the PVC flooring waste management plan. 

Example II: Development of machine learning-embedded applications to 

support hazardous material assessment in renovation and demolition 

Example II shows how machine learning prediction can be used as a decision support tool in 

assessing the risk of hazardous materials in renovation and demolition projects. The project 

involve the areas of “algorithm developement” and “technical solutions delivery”. Over the 

years, the presence of hazardous materials in the ongoing rebuilding or demolition process 

posed high risks of health exposure to the demolition contractors (68), as well as 20% of cost 

increase and project delay due to acute decontamination for property owners (69). Identifying 

the potential presence of hazardous materials such as asbestos and PCB in advance can 

facilitate semi-selective demolition, a practice that removes contaminants or the material 

fractions that can overly reduce the quality of recycled building parts is regarded as a feasible 

strategy for implementing predictive maintenance (70).  

On the other hand, the presence of hazardous materials also hinders circular economy-

inspired actions in the building sector that is fundamental for reducing material-related carbon 

emissions during the production, use, and disposal phases (71,72). By recovering the 

materials and components’ values from the existing building stock and implementing circular 

economy-related strategies, 39% of global greenhouse gas emissions from material 

extractions, processing, and manufacturing of construction products can be prevented and 

28% of virgin resource use can be cut (73). Despite the ambition toward a clean material cycle 

is unambiguous, several underlying factors prevent the construction and demolition waste 

(C&DW) sector from accelerating the uptake of reuse or recycled aggregates, above all, low-

quality assurance of recycled materials, lack of control standards and tools, the needs for 

multiple processing before reuse, low market incentives for secondary materials, incomplete 

legal requirements, and so on (74).   
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To address the safety and sustainability aspects of building components, the EU Construction 

and Demolition Waste Management Protocol (75) and EU Waste Audit Guideline (76) were 

established to lead inventories of hazardous waste during the pre-demolition audit to ensure 

high-grade recycling and adequate waste management (75). Aligning with the legislative 

requirement, the implementation of hazardous waste inventory is mandatory in many member 

states for demolition, rebuilding, or extensive renovation permit application. Other regulations 

concerning hazardous material management, including handling and decontamination, are 

stated in national legislation such as Waste Regulations, Environmental Protection Agency 

regulation, and specific requirements from the municipalities. The accumulated environmental 

data are often maintained by individual municipalities and stored as hard copies in city archives 

(77). Owing to resource-demanding and time-consuming data collection and processing, the 

inventory data are left out from the national building database, which in turns hampers the 

understanding of reginal and national hazardous material stock (31). 

The use of machine learning and data mining in building stock research has become 

increasingly common. Previous studies have tried to characterize the potential presence of 

asbestos-containing materials  and leverage the key building characteristics to predict the likely 

contaminated buildings (69). For instance, a few machine learning applications have been 

developed in Poland to predict the spatial distribution and estimate the amount of the remaining 

asbestos cement roofing using hyperspectral images and national registers as input data (78). 

However, the majority of scientific publications for hazardous materials prediction at the 

building level are relatively few and remain at the statistical analysis.  

As a starting point, the inventory data from Gothenburg and Stockholm cities were collected 

and coupled with national building registers to explore the possibility for predictive analysis, 

show in Figure 4. The pioneering efforts of creating a hazardous material dataset and 

hazardous waste inventory database have addressed the circular material aspect (31), which 

is left out from the interdisciplinary research domains of applied AI, C&DW management, and 

building stock analysis. Through improving the hazardous waste identification, source 

separation, and collection, the trust in the quality of recycled components/materials and the 

confidence in the corresponding waste management process will be enhanced. In the early 

stage of method development, detection patterns in specific building classes were confirmed 

and required to be verified with more input data. At the point of innovation implementation and 

knowledge exchange, the use of data-driven methods would need to be incorporated into 

organization needs and decision-making processes to deliver suitable applications for 

stakeholders. 
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Figure 4. A proposed procedure for creating a hazardous material dataset by integrating and 

validating several data sources. Building parameters are in this case, predctive variables in 

modeling for binary classification of target hazardous materials. 

 
In this deliverable, the authors developed a novel approach in the Swedish contexts by 

creating a data analysis workflow (Figure 4) and a machine learning pipeline (Figure 5) based 

on hazardous waste inventories to identify detection patterns of asbestos pipe insulation in 

multifamily houses and PCB joints or sealants and school buildings. In the explorative study, 

the prediction performance of various supervised learning classifiers, the minimum training 

data size, and the feature impacts and magnitudes to the model output were investigated 

(79). The attempted predictions showed method applicability for large-scaled risk screening 

and could be used to complement current environmental investigations. 
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Figure 5. An machine pipeline comprised of (1) data processing concerning dataset partition 

and feature engineering, (2) model development including training and evaluation, and (3) 

result interpretation of influential features. 

The previous work corresponds to the steps of domain consultation and data screening, and 

parts of algorithm development in the applied machine learning loop. The loop is developed by 

RISE as a framework to guide data inquiry for pre-defined hypotheses. Due to the outbreak of 

the COVID-19 pandemic, the research commenced with domain consultation to screen 

relevant field data and compile them into a machine-readable dataset. After that, machine 

learning models have been developed to identify algorithms with high performance for the 

specific task. At this stage, the quality and application of the inventory data have been 

confirmed, and the presence patterns of certain asbestos and PCB-containing materials in 

specific building classes have been ascertained. The next step is to engage the organization 

needs to clarify how the method can effectively contribute to the challenges in practice. The 

inputs from the stakeholders, including relevant authorities, property owners, auditors, waste 

handling companies, etc., are significant to delivering technical solutions.  

 

The anticipated risk assessment decision support tools can help underpin the quality 

assurance of C&DW in the circular economy value chain and address the needs of actors in 

the value chain: (1) estimate the clean building stock on the macro-scale for the Housing, 

Building and Planning authority, and (2) predict the presence likelihood of hazardous materials 

in buildings on the micro-scale for demolition contractors and waste handling companies. Such 

decision support tools for hazardous material risk evaluation are not available in Sweden or 

other countries. Considering the asbestos and PCB hazard worldwide, the novel method 

development can establish a research front that can be of use for other countries. By puzzling 

up the last three elements of the applied machine learning loop, the research applications can 

promote the ongoing progress toward the circular and contaminant-free built environment. 

 

To summarize, the aim of the project is built on the previous research results and further 

exploits the application potential of machine learning models in response to the needs of the 

public and private sectors. The project outcomes are expected to contribute to a closed building 

material loop and the proposed process and service innovation have a high replicable potential 

internationally. For instance, the EU Commission recently published a working document on 
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“Scenarios for a transition pathway for a resilient, greener and more digital construction 

ecosystem” (Brussels, 14/12/2021), in which the importance of developing a digital hazardous 

material inventory or building logbook is stressed. As such, the project results — machine 

learning-embedded hazardous material assessment and tailored deconstruction planning 

strategy — can address this emerging area and help EU countries create a more digital and 

circular construction ecosystem. 

Example III: Development of machine learning-embedded applications to 

predict cultural heritage values  

This example is a recent development of an analysis with the purpose of predicting 

cultural heritage values in the Swedeish building stock. EU requires member states to 

make lists of all buildings that are of special cultural heritage value in order to preserve 

cultural heritage values while still improving overall energy efficiency (in the EPBD). In 

Sweden no such register exists. Instead there are multiple registers in which building 

have been added one at a time over the years. There is thus a risk that some building 

that sould be on some of the lists have been overlooked.  

In this example machine learning was used to predict cultural heritage value based on 

the existing lists and google stree view images of all buildings in Sweden. The work 

flow process can be seen in figure 6.  

 

Figure 6 Workflow for prediciting cultural heritage values 

The final output were clusters of buildings which were used by cultural heritage experts to 

speed up the process of creating the complete Swedish list of buildings with cultural heritage 

value..In figre 7 below examples of clustered buildings can be seen.     
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Figure 7 a-e, Different building image clusters that were automatically generated from google 

street view images. Figure 7e illustrates a methodological problem. Images that contain busses 

have been clustered into one separate group. 

Example IV: Usage of fuzzy logic to ascertain building owners   

Comparing registers with property ownership to identify changed ownership over time can be 

difficult due to the old organization numbers remains unchanged and hierarchical company 

structures. Small changes in organization names can further complicate the identification of 

ownership changes. For this reasons fuzzy logic can be used for the improvement of data. 

That enables: 

1. Utilization of information, it is possible to study the impact of rental housing acquisitions 

on the largest rental developers. 

2. Understanding the transitions in ownership can help us to understand the 

transformation of the building stock and support decision making 

In figure 8 two company names of building owners are compared the fuzzy logic score is seen 

in the third column. In this example we used the following steps to assure comparability 

between the building owners:  

1. Two company names were compared to identify any differences in spelling or syntax 

using a fuzzy matching algorithm that generated a score based on the level of similarity 

between the names. 

2. If the company names were an exact match, or if the fuzzy score was very high, this 

suggested that no change in building ownership had taken place. 
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3. If there were slight variations in the names, or if the fuzzy score was lower, further 

investigation was conducted to determine whether a change in building ownership had 

indeed occurred, despite the retention of the same identification number. 

 

 

 

  

 

 

 

Figure 8 Etracted image as an example of how application of fuzzy logic algoritm output can 

look. The 0,69 value is the factor that can be used to separate the companies that are 

considered a match and those that do not match.  
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The Swedish pilot case: Using machine learning to 

enrich the building database for energy retrofitting  

The Swedish pilot case demonstrates the implementation of machine learning to complement 

additional information to the building database for planning energy retrofitting from a study by 

Platten et al. (32). The dataset used to train the ML models, a sample of the full national 

building-specific dataset, metadata, and the calculation behind the key reference in the work 

(80) were provided to the BuiltHub consortium as part of the RISE commitment, on the 16th of 

June 2022, and is also attached to the D4.4 submission. This data is the input data used for 

the ML models. The results are presented in this chapeter.  

How analyses can be run on the platform, and what infrastructure would be needed. How it 

could be implemented still needs to be worked out with the BuiltHub partners that are working 

with the platform. At the current moment, RISE is still waiting for the reply of what is needed to 

take the Swedish pilot case further in this regard. However, the delay is probably due to the 

fact that the Flanders pilot case has taken a lot of time and is a higher priority as the Flanders 

case involves external partners that have ongoing needs for analyses. As opposed to the 

Swedish case which is based on previously conducted work.  

Worth mentioning is that the Swedish pilot case also demonstrates how a business model can 

be derived from working with machine learning in the institute/academic sector. In Sweden, as 

well as in many other countries, there are different rules for data access for academia and the 

private sector. There are analyses of building stock data that the private sector cannot provide 

to authorities. Only research consultancy by an institute could meet the data access 

requirement. Universities in Sweden have a tendency to give research consultancy work a low 

priority since it leads to few and more applied scientific publications. 

Building characteristics are essential information for investigating the feasibility of specific 

energy conservation measures. However, there is a lack of records to enable evidence-based 

national energy policy (organization needs). With respect to authorities’ needs, a study to 

enrich the EPC database based on the prediction results of building characteristics was 

designed. The research scope was limited to multi-family houses built between 1945-1975, 

which face increasing renovation demands with potential energy retrofits (domain 

consultation). Screening the data source that can complement EPCs with building-specific 

information, including building type, façade material, and eaves overhang, was executed with 

the help of Google Street View (data screening). Through combining a limited number of expert 

observations and the generation of interpretable machine learning models, unknown building 

characteristics relevant for determining specific energy measures can be predicted. 

For this study, a reference with tailored energy retrofitting packages for the Swedish multifamily 

building stock 1945–1975 have been used (see Reference (80)). These energy retrofitting 

packages will be used to exemplify how building database enrichment can enable more 

accurate national estimations of energy savings and costs, as a certain number of building 

characteristics are needed in order to allocate appropriate energy retrofitting packages to 

buildings. For each building type described in Section 2.1, there are three available packages 

(1–3) which entail di_erent costs and energy savings (low to high). The packages must be 

applied in successive order, meaning that Package 2 requires Package 1 to have been 

conducted, and Package 3 requires both Package 1 and Package 2 to have been conducted.  
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• In Package 1, a number of measures that aim at optimising the operation of the building 

are undertaken (80). Apart from building type, no building characteristics must be 

known in order to determine the feasibility of the measures in Package 1.  

• In Package 2, components such as pumps and fans are changed to more e_ective 

counterparts, and additional insulation is added in the attic and to existing windows 

[44]. As for Package 1, building type is the only characteristic that needs to be known 

in order to determine the feasibility of the measures in Package 2. 

• Package 3 contains the most extensive measures, including a new ventilation system 

with heat exchange from exhaust air, a change of windows, and 10 cm additional 

insulation on the building envelope (80). To determine the feasibility of Package 3, two 

building characteristics apart from building type are of advantage to know. The first 

characteristic is the façade material; more specifically, it is of advantage to know 

whether the building has a brick façade or not, as brick facades often must be 

preserved due to cultural and historical values. Additional insulation on a brick façade 

is thus not always a feasible option. More so, the shape of the roof and length of the 

eaves determines whether there is room for additional façade insulation or not, and 

additional façade insulation on buildings with an existing eaves overhang thus involves 

less extensive inventions than when the existing roof must be adjusted to a thicker 

façade. Consequently, eaves overhang is a necessary building characteristic to know 

to determine the feasibility of Package 3. 

Ocular observations in Google Street View were conducted for 476 EPCs that were sampled 

from the total of 50,000 EPCs 1945–1975. The sampling was performed as weighted random 

sampling, where the probability of each EPC being selected was determined by the area of the 

building the EPC represented. The reason for the weighted random sampling was to gain a 

sample that was representative of the building stock in respect to area rather than in respect 

to the individual EPCs. However, due to a low representation of certain building types (tower 

blocks) in the sampled data, observations were conducted for another 41 manually selected 

EPCs, resulting in a total of 517 observations. The manual selection of complementing EPCs 

was based on number of storeys, as tower blocks usually are higher than slab blocks. 

For the sample of 517 EPCs, observations were conducted in Google Street View using the 

registered address in the EPC. Observations were conducted by all of the authors, and 

methods to ensure that observations were conducted uniformly were undertaken. The quality 

of the observations was ensured by first letting all authors make observations guided by a 

senior researcher. After that, a control matrix of 13 observations was constructed to ensure 

that all authors’ classifications agreed. After corrections, authors conducted observations 

individually. Any ambiguous cases were discussed with a senior researcher before 

classification, or rejection as valid observation. In three cases, observations were not possible 

due to lack of coverage in Google Street View. These EPCs were thus removed which resulted 

in a total of 514 observations. This was considered a su_cient number of observations as 

iterative testing of ML models starting at 200 observations showed no significant improvement 

in accuracy after 400 observations. The building characteristics and the respective classes that 

were observed are listed in Table 4. The choice of which building characteristics to observe 

was based on the gap between available data in the EPCs and data needed in order to assess 

the feasibility of energy retrofitting packages from the case presented in Section 2.3. It was 

found that the characteristics building type, whether or not the building has a brick façade, and 

whether or not the building has eaves overhang were needed. As seen in Table 4, rowhouses 

are included as a building type to be observed despite them not being introduced in Section 

2.1. Rowhouses are not multifamily buildings per se, but the way they are owned determine 
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whether their EPCs end up in the category for multifamily buildings or not. Rowhouses that are 

owned in similar ways as multifamily buildings (rental housing, resident-cooperatives) are 

classified as multifamily buildings in the EPC database, and they will thus be necessary to 

identify when using the EPCs to study the multifamily buildings 1945–1975. They will however 

be excluded from analyses of the energy savings potential in the multifamily building stock 

1945–1975. 

 

Figure 9. A map of Sweden showing the distribution of the multifamily building stock 

constructed between 1945 and 1975 (light dots) and the buildings that were observed in Google 

Street View (black crosses). 

Finally, the geographical distribution of the 514 observations is shown in Figure 9. The light 

dots in the map show all multifamily buildings constructed between 1945 and 1975, whereas 

the black crosses mark the multifamily buildings that were observed in Google Street View. It 

can be seen that the studied multifamily building stock is distributed all across Sweden in a 
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way that reflects the population density of the country. The observations show a similar pattern, 

indicating that they constitute a geographically representative sample. 

The feature selection for machine learning modeling was executed in two parts: (1) pinpointing 

potential features by domain experts, (2) automatically validating the chosen features with 

stepwise regression. Derived features were generated from stepwise regression as ratios of 

two or more features to distinguish between building characteristics better. The number of 

stories and the construction year was found to be influential features to differentiate building 

types. Afterward, numerical variables were normalized with a min-max scale. Three supervised 

learning classifiers were explored for optimizing the prediction results (algorithm development). 

Considering the bias and variance trade-off of machine learning models, appropriate model 

types for the problem and careful parameter tuning and regularization were investigated. For 

instance, logistic regression has a high bias but low variance, whereas support vector machine 

has a low bias but high variance. 10-fold cross-validation was carried out in search of optimal 

machine learning model with the following criteria: (1) a high overall accuracy of training data 

with proximity to testing data, (2) distribution of accuracy for intended application purpose, (3) 

a low number of input features to enhance interpretability. Table 5 illustrates the chosen 

prediction model and its accuracy for each of the predicted building characteristics. 

Table 5. The chosen prediction model and its accuracy for each of the predicted building 

characteristics adopted from Platten et al. (32).  

Building Characteristic Features in Selected Model Machine 
Learning Model 

Accuracy 

Building type Number of stories, Construction year 

Heated space per story and address 

Number of apartments per address 

SVM 88.9 

Eaves overhang + 
not brick façade 

Construction year 

Number of apartments 

Number of stairwells per apartment 

Area code 

SVM 72.5 

 

As a result, the model that matches the criteria above was adopted to predict characteristics 

of the multifamily building stock of 1945–1975; thereafter, the predicted features were used to 

estimate energy-saving potential from various energy retrofit packages. The rapid construction 

of new buildings between 1945 and 1975 in Sweden was partly facilitated by standardized 

building methods and building types, which enables applying standardised methods for 

refurbishment and energy conservation measures for these different building types (81). This 

findings showed that almost all of the Swedish multifamily buildings built in this era can be 

categorized into four building types using the features in Table 4: slab blocks built before 1960, 

slab blocks built between 1960-1975, panel blocks, and tower blocks. These building types are 

fundamental characteristics of the building structure and correspond to different energy retrofit 

strategies concerning energy saving potential and cost estimation (80). Accordingly, a decision 

tree for tailored energy retrofit packages was developed based on four building characteristics 

in Figure 10: renovation status, EPC rating, suitability for additional façade insulation, and 
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building type (technical solution delivery). These results can benefit the Swedish long-term 

renovation strategy for improving energy efficiency in the existing multifamily buildings.  

 

 

Figure 10. Decision tree showing how four building characteristics, i.e., renovation status, EPC 

rating, suitability for additional façade insulation, and building type, can help determine a 

tailored energy retrofitting package for each individual building adopted from Platten et al. (32). 

Results and application by the Swedish authorities 

Using these methods, advice and basic data were provided to the Swedish authorities which 

were used in the formulation of the Swedish national strategy for energy efficnecy. Figure 11 

and 12 details the costs and resulting energy efficiency improvement that were presented in 

the final report tot he authorities.  
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Figure 11 Energy usage. Extrapolated, previous, actual, prognoses and energy efficency 

strategies 

 

 

Figure 12 Costs for associated energy efficiency strategies  

 

Based on the analyses the following concluding recommendations were made: 

„The results of this report show that there is a large underlying need for renovation. 

This can be linked to the 'renovation debt' that exists and the necessary future 

investments that arise when the top of the 'million homes program' buildings have to be 

handled. These buildings will within the next few years have a value-year that exceeds 

50 years. This great renovation need means that there are good opportunities to also 

make the stock more energy efficient. Energy efficiency strategies to reach the 2030 
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target will lead to substantial costs. A particularly aggravating effect is also that the rate 

of new construction and that the need for housing is high, which also largely affects the 

renovation cost. This means that the construction cost with a higher percentage of total 

renovation would probably rise further. Population growth and the lack of housing 

further risk increasing the problems in the existing stock. And the renovation costs and 

cost for energy efficiency measures would increase the risks further. 

Use of the value-year in calculations regarding renovations is currently the only method 

to estimate building-specifically the registered renovations and anticipated renovations. 

For example, in Mikael Mangold's PhD thesis, it was concluded that condominium 

associations often make several minor renovations and carry out more continuous 

maintenance than the other owner groups. Consequently, we can conclude that the 

largest investments have been made in the group of condominiums. These renovations 

have led to only minor energy efficiency improvements. 

Concrete conclusions from the analysis of the apartment buildings built between 1945 

and 1975 are that the assumed costs for energy efficiency should be reviewed. 

According to the assumptions, it seems important to quickly obtain permission for 

adjustments and operational optimization. Furthermore, it seems that slatted houses 

built before 1960 can form a larger group of apartment buildings that can undergo far-

reaching energy efficiency improvements at a lower cost. Public utilities are 

overrepresented as owners of apartment buildings in this group.” (82) 

The business case of using machine learning for 

analyses for authorities 

The reworked version of the EPBD (to be presented the winter of 2023/2024) will require 

member states to have national building renovation plans. These plans should be linked with 

required political decision-making making and the plans should be designed to enable 

evaluation. Every member state will need to formulate and follow up these building renovation 

plans. This will be costly and cumbersome for many member states and there is an opportunity 

to help authorities in member states with these tasks using machine learning tools and 

analyses of building stock data.  

The Swedish pilot case described in the previous chapter is an example of how this can be 

done. In the upcoming more extensive work of formulating national building renovation plans 

in Sweden, there is a plan to develop new machine learning tools for improved understanding 

of the renovation need in Sweden. Specifically, the new language models enable the 

parametrization of building data that is currently only available as text.  

The new tools that the language models represent are novel and there are not many actors 

that have entered the market of selling building stock analyses that include data processing 

using language models. The combination of a larger upcoming need for building stock 

analyses among all member states and these new tools is a business opportunity that could 

be very suitable for BuiltHub.  
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The Swedish business case example 

In Sweden, the most commonly used variable for estimating the renovation need is a variable 

developed by the Swedish Tax Agency to estimate buildings' need for renovation investments 

(Värdeår). When a renovation project is conducted that goes beyond maintenance it is 

registered by the Swedish Tax Agency. The cost of the renovation results in a change in the 

so-called value year of the building as described by the Swedish Tax Agency. 

The purpose of recording a value year is to have an official record of the anticipated remaining 

service life of buildings. The value year is initially the year of construction but as renovation is 

conducted the value year will increase depending on the cost of the renovation as described 

in Table 6 and Equation 1. Registration of renovation in the tax index usually happens 1–2 

years after the renovation.  

 

 

 

 

 

 

 

Equation 1 How the value year is calculated for group 2 in table 6. For example: if a building 

built in 1960 was renovated in the year 2000 to a cost of 50% of the new building cost the value 

year after the renovation would be 1980.  

The changes in value year only reflect the cost of the renovation but do not contain what kind 

of renovation measures were implemented. The value year is an indicator of renovation costs, 

or an indicator of investments into the building. However, the changes in value year contain 

the following uncertainties:  

• More than one renovation can have happened, but only the last renovation year is 

registered 

• It is not known what kind of renovation measure that has been conducted 

• Property owners have different standards for what constitutes renovation and what is 

considered general maintenance.  

Regardless of all these shortcomings, the value year is still the best proxy for estimating the 

renovation need in the Swedish building stock. RISE has previously mitigated shortcomings 

using statistical methods and cross-referencing with auxiliary data (specifically ownership 

data). RISE's idea is to make use of new data sources to further calibrate the analyses of the 

value years. The new sources are: 

 

Table 6. Methods for setting a value year based on renovation costs 

according to Swedish Tax Office. 

 Renovation cost 

Group 1 More than 70% of the new building cost* 

Group 2 20-70% of the new building cost* 

Group 3 Less than 20% of the new building cost* 

*The new building cost is increasing based on Inflation, changes in construction costs 

and property value. This is also specified in a table by the Swedish Tax Office.  
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• Building permits 

• Property owners' yearly audits  

• Energy experts prescribed energy efficiency measures 

• Real estate agent prospects  

All these sources contain texts that can be analysed and parametrised using the language 

models. The benefit of using the language models is that they facilitate need-specific 

parameterization.  

In the case of the requested national building renovation plans, there are several parameters 

that would be beneficial to map and take into consideration. First of all, to just calibrate the 

value year itself is one application. However, the type of renovations that have been conducted 

and the type of energy efficiency measures that have been suggested by the energy experts 

would be useful to better understand the renovation needs and the energy efficiency potential.  

RISE has made initial tests with language model API and the Energy experts prescribed energy 

efficiency measures. The tests indicate that the idea is feasible in terms of parameterization 

quality and loading times. However, there is a need to purchase a licence and to work locally. 

Working locally is also a requirement to not make larger datasets available for the international 

language model providing companies.  
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Conclusions 

A literature review on building stock research using machine learning provided a theoretical 

background for upcoming analysis. Overall, most of the building stock analyses were found in 

the topics of energy, building characteristics, and IEQ. The fact of uneven extent of research 

may be due to low data accessibility and high-cost factors. With emergent subjects in 

household EV charging and smart-grid ready buildings, more data can be expected to enrich 

the associated building stock analysis. 

Also, a workflow for conducting an applied machine learning loop was proposed and 

exemplified. This agile process can guide the BuiltHub analysis by reviewing the presence of 

the necessary elements. Each step requires the BuiltHub working packages, and close 

communication is needed to deliver valuable solutions. These collaborative efforts can be 

regarded a: WP2 synthesizes the needs from stakeholders and consults domain experts for 

feasibility control of the hypothesis; WP3 compiles the data and performs data validation; WP4 

conducts analysis and develops models; and lastly, WP5 presents the graph database and 

disseminates results. 

Adopting the same concept, two more extensive research examples within the field of building 

stock analysis demonstrated the practical implementation of the loop in varied contexts. 

Predicting the presence of hazardous materials in buildings in Example I emphasized the 

importance of domain consultation and data screening. While using machine learning to enrich 

the building database for energy retrofitting in Example II reported the process of algorithm 

development and technical solution delivery. Both examples have a clear hypothesis for the 

prediction tasks and access to the validated, non-aggregated data. Despite the limited amount 

of labeled data, high data quality and data stratification process reduce prediction uncertainty 

risk. Following the context, filling the data gaps and conducting descriptive analysis were 

identified to be relevant in the subsequent tasks. Considering the BuiltHub indicators and 

existing dataset characteristics, the techniques for handling missing values and clustering for 

future work will be introduced in the next section.   
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Future work 

The next step is to work with the Flanders pilot case. Various other BuiltHub WPs have started 

working and adapting data from the municipality. The intention is to use the Flanders pilot as 

a concrete BuiltHub example of the kind of support that can be given to a project partner 

stakeholder. The Swedish pilot case presented in this report will serve as a model for the 

upcoming work. 
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